ELSEVIER

Contents lists available at ScienceDirect

Antiviral Research

journal homepage: www.elsevier.com/locate/antiviral

Identification of hepatitis C virus genotype 2a replicon variants with reduced susceptibility to ribavirin

Su Su Hmwe^{a,b}, Hideki Aizaki^a, Tomoko Date^a, Kyoko Murakami^a, Koji Ishii^a, Tatsuo Miyamura^a, Kazuhiko Koike^b, Takaji Wakita^a, Tetsuro Suzuki^{a,*}

- ^a Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- ^b Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

ARTICLE INFO

Article history:
Received 8 April 2009
Received in revised form 19 October 2009
Accepted 18 December 2009

Keywords: Hepatitis C virus Replication Ribavirin Drug resistance

ABSTRACT

Ribavirin (RBV), a nucleoside analogue, is used in the treatment of hepatitis C virus (HCV) infection in combination with interferons. However, potential mechanisms of RBV resistance during HCV replication remain poorly understood. Serial passage of cells harboring HCV genotype 2a replicon in the presence of RBV resulted in the reduced susceptibility of the replicon to RBV. Transfection of fresh cells with RNA from RBV-resistant replicon cells demonstrated that the RBV resistance observed is largely repliconderived. Four major amino acid substitutions: T1134S in NS3, P1969S in NS4B, V2405A in NS5A, and Y2471H in NS5B region, were identified. Site-directed mutagenesis of these mutations into the replicon indicated that Y2471H plays a role in the reduced susceptibility to RBV and leads to decrease in replication fitness. The results, in addition to analysis of sequence database, suggest that HCV variants with reduced susceptibility to RBV identified are preferential to genotype 2a.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Hepatitis C virus (HCV) is a leading cause of chronic liver diseases, such as chronic hepatitis, cirrhosis and hepatocellular carcinoma, affecting approximately 170 million people worldwide (WHO, 2000). HCV belongs to the genus Hepacivirus of the family Flaviviridae, and its genome is a single-stranded, positive-sense RNA of 9.6 kb. HCV displays marked genetic heterogeneity and is currently classified into 6 major genotypes and more than 50 subtypes. HCV genotypes have regional distribution and, of those, genotypes 1 and 2 are detected worldwide (Simmonds et al., 2000). Current standard therapy for chronic hepatitis C consists of the combination of pegylated interferon alpha (IFN- α) in combination with ribavirin (RBV). However, approximately 50% of treated patients infected with genotype 1 do not respond or show only a partial or transient response and treatment is limited by the adverse effects of both agents (Manns et al., 2001; Fried et al., 2002).

HCV replication is associated with a high rate of mutation that gives rise to a mixed and changing population of mutants, known as quasispecies (Martell et al., 1992; Domingo, 1996). The characteristic of HCV may have important implications concerning viral persistence, pathogenicity and resistance to antiviral agents

(Domingo, 1996; Forns et al., 1999; Farci and Purcell, 2000). Most previous studies on the possible relationship between HCV quasispecies and response to chemotherapy have been carried out in HCV genotype 1 patients. In addition, several studies have successfully demonstrated that the HCV subgenomic replicon is derived from genotype 1, which typically contains HCV nonstructural genes placed downstream of the neomycin phosphotransferase gene, in selecting variants resistant to antiviral inhibitors. Two studies have demonstrated the identification of HCV genotype 1 mutants responsible for decreased sensitivity to RBV (Young et al., 2003; Pfeiffer and Kirkegaard, 2005). However, little is known about the generation of genotype 2 isolates resistant to antivirals including RBV, or the molecular mechanisms that confer resistance.

In this study, we report the generation and characterization of HCV genotype 2a replicon variants with reduced susceptibility to RBV. The impacts of major amino acid substitutions observed on RBV susceptibility and viral replication capacity were also examined

2. Materials and methods

2.1. Compounds

RBV and IFN- α were purchased from MP Biomedicals (Eschwege, Germany) and Dainippon Sumitomo Pharma (Osaka, Japan), respectively.

^{*} Corresponding author. Tel.: +81 3 5285 1111; fax: +81 3 5285 1161. E-mail address: tesuzuki@nih.go.jp (T. Suzuki).

Table 1Primers used for PCR and nucleotide sequencing.

Region	Primer name	Nucleotide sequence	Position ^a	Polarity			
NS3-4A-4B region	PCR primers						
, and the second	JF1S	GAAAAACACGATGATACCATG	1756-1776	Sense			
	JF1AS	AACCCAGTCCCACACGTC	4650-4633	Antisense			
	Sequencing primers						
	JF5S	CACTTTCAGTGACAACAGCA	2322-2341	Sense			
	JF6S	CGCCACCGACGCCCTCATGA	3003-3022	Sense			
	JF4AS	CTGGTCGACAACGGACTGGT	4109-4090	Antisense			
NS5A-NS5B region	PCR primers						
-	JF2S	TGCTCCGGATCCTGGCTC	4612-4629	Sense			
	JF2AS	TACCTAGTGTGTGCCGCTCTA	7786-7806	Antisense			
	Sequencing primers						
	JF3S	TGAGGTCCATGCTAACAGA	5209-5228	Sense			
	JF4S	TCGAGGGGAGCCTGGAGAT	5870-5889	Sense			
	JF3AS	GAGTGTCTAACTGTTTCCCAG	7220–7200	Antisense			

a Reference strain: Gene Bank accession no. AB114136.

2.2. Cell culture

The human hepatoma cell line Huh-7 was maintained in Dulbecco's modified Eagle's medium (DMEM) supplemented with MEM non-essential amino acids (Invitrogen) 100 units/ml penicillin, $100 \,\mu\text{g/ml}$ streptomycin, and 10% fetal bovine serum (FBS) at $37\,^{\circ}\text{C}$ in a $5\%\,\text{CO}_2$ incubator. HCV replicon cells JFH-1/4-1 (Miyamoto et al., 2006), which are Huh-7-derived cells carrying a subgenomic replicon of JFH-1 (Kato et al., 2003) were maintained in the Huh-7 medium as above, supplemented with $1 \,\text{mg/ml}$ G418 (Nacalai Tesque, Kyoto, Japan).

2.3. Quantification of HCV RNA

Total RNA was isolated from harvested cells using Trizol (Invitrogen). Copy numbers of the viral RNA were determined by real-time RT-PCR involving single-tube reactions and performed using TaqMan EZ RT-PCR Core Reagents (PE Applied Biosystems, Foster City, CA, USA), as described previously (Aizaki et al., 2003; Takeuchi et al., 1999).

2.4. Cell viability assay

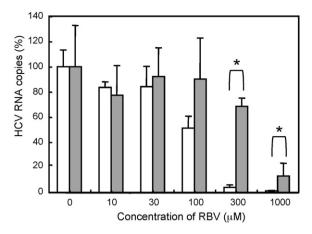
Cells were seeded at density of 5×10^4 cells/well in 24-well plates and RBV at various concentrations was added on the next day. Cultures were further incubated for 3 days at 37 °C under a humidified 5% $\rm CO_2$ atmosphere. Cytotoxicity assay was performed by Cell Titer-GLOTM Luminescent Cell Viability Assay (Promega, Madison, WI, USA) according to the manufacturer's instructions. Luciferase activities were quantified with LUMAT LB 9501 (Berthold Technologies, Bad Wilbad, Germany).

2.5. Isolation and nucleotide sequencing of HCV nonstructural regions from replicon-containing cells

Total cellular RNA was isolated from replicon cells with or without RBV treatment as described above. cDNA synthesis was carried out by using Super ScriptTM III First-Strand Synthesis System for RT-PCR (Invitrogen) with primer JF1AS for NS34AB region and JF2AS for NS5AB region. Two cDNA fragments, corresponding to NS3–NS4B and NS5A–NS5B regions, were amplified by PCR using Takara EX Taq DNA polymerase (Takara BIO, Kyoto, Japan) and specific primers (Table 1; Date et al., 2004). PCR products were subcloned into pGEM-T vector (Promega) and inserts were sequenced using QIA prep^R Spin Mini Prep kit (QIAGEN, Tokyo, Japan). Nucleotide sequences were analyzed with the 3100 Avant Genetic Analyzer (PE Applied Biosystems).

2.6. Plasmid constructions

pSGR-JFH1/luc, a subgenomic replicon construct with luciferase reporter derived from HCV genotype 2a JFH-1 isolate was reported previously (Miyamoto et al., 2006). Mutant replicons carrying T1134S, P1969S, V2405A, and Y2471H were created by PCR-based site-directed mutagenesis and cDNA fragments containing the above mutations were inserted into the corresponding sites of pSGR-JFH/luc. All plasmids were confirmed by sequencing the entire PCR-generated inserts. Each mutant is referred to by the original amino acid (one letter code) followed by the residue positions within the complete open reading frame of full-length JFH-1 and the substituted amino acid (one letter code).


2.7. RNA synthesis and transient replication assay

The transient replication assay method was described previously (Kato et al., 2005). Briefly, purified plasmids of pSGR-JFH1/Luc, -JFH1/Luc-T1134S, -JFH/Luc-P1969S, -JFH/Luc-V2405A and -JFH/Luc-Y2471H were linearized with Xbal and were treated with proteinase K and SDS, followed by phenol–chloroform extraction. RNA was synthesized with AmpliscribeTM T7 Transcription Kits (Epicentre BIO Technologies, Madison, WI, USA). Each transcribed RNA (5 μ g) was electroporated into 2.5 × 10⁶ of Huh7 cells pulsed at 290 mV, 975uFD with Gene pulser II apparatus (Bio-Rad Laboratories, Hercules, CA, USA). Transfected cells were resuspended in growth medium without selection antibiotics and were plated in 24-well plates at 6 × 10⁴ cells per well. Cells were harvested at different time points post-transfection and were lysed in Passive Lysis Buffer (Promega). Luciferase activity in cells was determined using the Luciferase Assay System (Promega).

3. Results

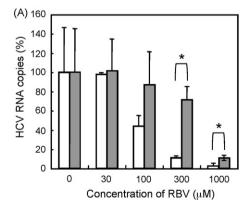
3.1. Selection of replicon variants derived from genotype 2a with reduced susceptibility to RBV

It has been reported that RBV inhibits HCV RNA replication in Huh-7 cells bearing the viral subgenomic replicon RNAs with the EC50 (50% effective concentration) values of 15–225 μM (Zhou et al., 2003; Tanaka et al., 2004; Kato et al., 2005; aus dem Siepen et al., 2007). To select for RBV-associated replicon variants, cells bearing a genotype 2a HCV replicon were serially passed in the presence of 200 μM RBV as well as 1 mg/ml G418. After 20-week treatment, variant cells were then tested for RBV resistance. HCV RNA levels were determined after a 72-h incubation with various concentrations of RBV in the absence of G418, and about 5-fold-reduced susceptibility to RBV was observed in the variant replicon

Fig. 1. Inhibitory effect of RBV on HCV RNA levels in genotype 2a replicon cells after long-term treatments with RBV. The replicon cells were serially passaged in 0 or 200 μ M RBV for 20 weeks. The cells were then split and incubated with fresh RBV at various concentrations in the absence of G418 for 3 days, followed by the determination of HCV RNA. Clear bars, passage in the presence of RBV. HCV RNA copies per microgram of total RNA were normalized as percentages of those of untreated (RBV 0 μ M). Each data point is presented as the mean of three independent determinations with standard deviation. *p < 0.05.

cells; the EC₅₀ values for the variant and wild-type replicon cells were 470 and 102 μ M, respectively (Fig. 1). Comparable cytotoxic effects of RBV were observed against wild-type and variant replicon cells, with the CC₅₀ (50% cytotoxicity concentration) values of 151 and 156 μ M, respectively (data not shown).

3.2. Mapping RBV resistance to cell line or replicon RNA


To test whether reduced susceptibility to RBV in the variant cells observed as above was due to the appearance of mutations within the viral RNA or was cell-derived, total RNAs from the variant and wild-type replicon cells were extracted and used for retransfection of naïve Huh7 cells. Retransfected cells resistant to G418 were established after 4 weeks of cultures in the presence of 1 mg/ml G418 and were assessed for HCV RNA replication sensitivity to RBV (Fig. 2A). HCV RNA levels in the cells obtained from the wild-type replicon were inhibited by 56, 89 and 97% with 100, 300 and 1000 μ M RBV, respectively. By contrast, the culture retransfected with RNA derived from the variant replicon cells exhibited inhibition levels of 13, 29 and 89% with the corresponding concen

trations of RBV. EC $_{50}$ values were calculated to be 93 and 449 μ M, respectively. We confirmed the presence of replicon mutations, as described below, in the cells retransfected with RNA derived from the variant replicon cells.

In order to explore the possibility for cell-derived resistance, both wild-type and variant replicon cells were cured of viral RNAs by IFN treatment; cells were passaged with media containing 100 IU/mL IFN- α in the absence of G418 for 2 months. To compare RBV sensitivity, cured cells were transiently transfected with the wild-type JFH-1 subgenomic replicon RNA and were treated with various concentrations of RBV for 72 h. Similar anti-HCV effects of RBV were observed in the cured cells derived from wild-type and variant replicons, with the EC50 values of 147 and 118 μ M, respectively (Fig. 2B). Thus, the results suggest that the RBV resistance observed may arise by mutations in the replicon rather than by changes in the cells.

3.3. HCV mutations in replicon variant with reduced susceptibility to RBV

It has been reported that mutations in RNA virus genomes responsible for RBV resistance are mostly present in the coding region for the viral RNA-dependent RNA polymerase (RdRp). On the other hand, it is known that RBV works as an RNA mutagen to generate rapidly mutating viral RNA and that NS5B RdRp and other nonstructural proteins in HCV are involved in the viral replication complex, playing key roles in genome replication. Therefore, we sequenced the coding regions for NS3 through NS5B proteins of the replicon molecules in order to determine whether mutations associated with RBV resistance were generated. As shown in Table 2, there were numerically more synonymous and nonsynonymous mutations in the RBV-resistant variant replicon cells (RBV treatment) when compared with untreated replicative conditions (No-treatment) across most regions examined. Mutation frequencies of NS3, NS4B and NS5A regions of RBV treatment were significantly higher than those of No-treatment. The total number of synonymous mutations in the RBV-resistant variant replicon cells was 3 times higher than that under untreated replicative conditions, and the number of non-synonymous mutations in the RBV-resistant variant replicon cells was 1.5 times higher than that under untreated replicative conditions. The number of both synonymous and non-synonymous mutations (NS3, NS4B, NS5A and NS5B regions) in the RBV-resistant replicon cells was greater than that in the control cells. We also found a large number of transition

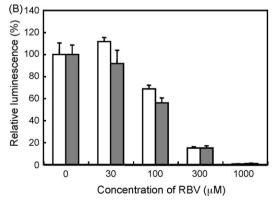


Fig. 2. Testing for replicon-derived resistance (A) or for cell-derived resistance (B). (A) Total RNA from RBV-resistant- or wild-type replicon cells was transfected into naïve Huh7 cells. After selection in 1 mg/ml G418 for 4 weeks, re-established replicon cells, wild-type derived (clear bars) and RBV resistance derived (gray bars), were treated with increasing concentrations of RBV in the absence of G418 for 3 days. HCV RNA copies per microgram total RNA were assessed and the levels from wild-type cells without RBV treatment were set at 100%. Data are indicated as means with standard deviations. *p < 0.05. (B) RBV-resistant- or wild-type replicon cells were cured by passage in IFN-\alpha in the absence of G418. Cured cells were transiently transfected with the replicon RNA derived from pSGR-JFH1/luc. Transient replication assay of transfectants derived from wild-type (clear bars) and RBV resistance (gray bars) was performed after treatment with various concentrations of RBV for 72 h. The values for wild-type-derived cells without RBV treatment were set at 100%. Data are indicated as means with standard deviations.

Table 2Mutation frequencies in HCV NS regions after 20-weeks culture with or without RBV treatment.

Region	nt length	No-treatment			RBV treatment		
		No. of non-synonymous mutations ^a	No. of synonymous mutations ^a	Mutation frequency (10 ⁻³)	No. of non-synonymous mutations ^a	No. of synonymous mutations ^a	Mutation frequency (10 ⁻³)
NS3	1893	1.7 ± 2.1	2.3 ± 1.5	2.1	4.7 ± 2.4	6.5 ± 2.5	5.9 ^b
NS4A	165	1.0 ± 1.0	0.3 ± 0.6	8.1	0.3 ± 0.5	0.5 ± 0.9	4.4
NS4B	780	1.3 ± 1.2	0.3 ± 0.6	2.1	2.3 ± 1.5	2.5 ± 1.2	4.7 ^c
NS5A	1380	4.0 ± 1.2	2.0 ± 1.2	4.3	5.9 ± 1.2	6.2 ± 2.4	12.2 ^c
NS5B	1773	4.5 ± 1.5	2.3 ± 1.5	3.8	4.8 ± 1.8	4.2 ± 1.1	9.0
NS3-NS5B	5991	12.5 ± 2.7	7.3 ± 2.7	_	17.8 ± 4.5	20.1 ± 4.6	_

^a Values are means ± standard deviations.

mutations in RBV-resistant cells, particularly G-to-A and C-to-U transitions, as expected from previous studies. Although mutations were distributed throughout nonstructural regions, four major amino acid substitutions; T1134S in the NS3 region, P1969S in NS4B, V2405A in NS5A, and Y2471H in NS5B, not seen in wild-type cells were observed in most of the subclones among RBV-resistant replicon cells. T1134S, P1969S, V2405A, and Y2471H were present, respectively, in 7 of 11, 6 of 11, 8 of 13, and 7 of 13 PCR subclones sequenced.

3.4. Effects of T1134S, P1969S, V2405A, and Y2471H on RBV susceptibility

To test the possibility that any of the four mutations as identified confer resistance to RBV, we introduced these mutations individually into the JFH-1 subgenomic replicon containing a luciferase reporter gene. Cells transfected with mutant- or wild-type replicon RNA grown in the presence of various concentrations of RBV for 2 or 3 days. As demonstrated in Fig. 3A, the replication levels of all four mutant replicons (SGR-JFH1/Luc-T1134S, -P1969S, -V2405A, and -Y2471H) in the presence of 125 or 500 µM RBV were higher than those of the wild-type replicon. In particular, the Y2471H mutant significantly reduced susceptibility to RBV; replication levels of SGR-JFH1/Luc-Y2471H were 3–5-fold higher when compared to those of wild-type under the present assay conditions.


The relative replication activity of these mutant replicons was further determined in 3-day replication assay without drug treatment (Fig. 3B). All mutant replicons exhibited reduced efficiency relative to the wild-type replicon. Levels of the Y2471H-mutated replicon were approximately 30% of those of the wild-type, thus suggesting that replicon mutants with reduced sensitivity to RBV are associated with decreased replication fitness.

4. Discussion

It is generally accepted that, during chemotherapy against viral infection, high rates of viral replication and high frequencies of mutation lead to generation of drug-resistant mutants. Although several potential mechanisms for the inhibition of HCV replication by RBV have been proposed, the molecular mechanisms involved in the generation of RBV-resistant HCV remain poorly understood.

This study found that long-term treatment of HCV JFH-1-derived replicon cells with RBV leads to selection of preferential mutations in NS3 (T1134S), NS4B (P1969S), NS5A (V2405A) and NS5B (Y2471H) genes. Each mutation only required a single nucleotide change, and P1969S, V2405A and Y2471H are transition mutations, which are known to be commonly caused by incorporated RBV. Site-directed mutagenesis of these mutations into the replicon demonstrated that Y2471H plays a role in reduced susceptibility to RBV

Crystal structure information revealed that HCV RdRp is organized into an arrangement with palm, fingers, and thumb subdomains (Lesburg et al., 1999). Residue 2471 (the 33rd position of NS5B) is present in the N-terminal loop region that bridges the fingers. Although this site is apparently distant from the active site of the polymerase in the palm region, it has been reported

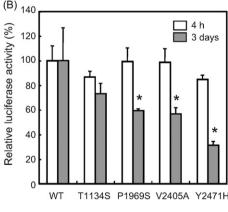


Fig. 3. Impact of major mutations in NS3–NS5B regions on RBV susceptibility (A) and replication capacity (B). Mutated replicons carrying single residue substitutions (T1134S, P1969S, V2405A, and Y2471H) were constructed and used for transient replication assay. Cells were transfected with either wild-type (WT) or with mutant replicon RNA in the absence or presence (125, 500 μM) of RBV. Luciferase activity was assessed at 4 h, 2 days and 3 days post-transfection (p.t.). (A) Luciferase activities of WT were set at 1, and the fold increases in the activities of mutants were plotted. (B) Luciferase activities in the absence of RBV at 4 h and 3 days post-transfection were shown. The activities of mutants were normalized as percentages of the WT activities. Data from triplicate samples were averaged and indicated with standard deviations. *p<0.05 against WT.

^b p < 0.05 relative to No-treatment by the unpaired t-test.

 $^{^{\}circ}$ p < 0.01 relative to No-treatment by the unpaired t-test.

that small molecules, such as benzimidazole compounds, are able to specifically bind the fingers-thumb interface and inhibit polymerase activity (Herlihy et al., 2008), thus suggesting that amino acid substitutions in the loop region may affect RNA polymerization. The involvement of tyrosine residue at position 415 of HCV NS5B in RBV resistance has been previously described for patients with genotype 1a infection and for the genotype 1b replicon (Young et al., 2003). Although the mechanism for resistance remains elusive, it has been hypothesized that RBV interacts with RdRp around this residue, which is located in the thumb subdomain, thus affecting RNA polymerization (Young et al., 2003).

Based on analysis of available sequences from Genbank, tyrosine at the 33rd residue of NS5B is conserved in all isolates of genotype 2a, but not in other genotypes. In genotype 1a and 1b isolates, 96% contain histidine and only a small population contains tyrosine or asparagine at the site. All the isolates of genotypes 3, 4, 5 and 6 contain histidine, whereas phenylalanine is conserved for genotype 2b. It should be noted that V2405 and P1969 are also completely conserved for genotype 2a but not for other genotypes. Therefore, it is likely that the identified HCV variants with reduced susceptibility to RBV are genotype-specific. It will be of interest to determine whether HCV genotype 2a is intrinsically more sensitive to RBV when compared with other genotypes.

At present, at least 4 mechanisms of action of RBV are proposed (Lau et al., 2002). They include (1) direct inhibition of the HCV replication machinery, (2) as an RNA mutagen that drives a rapidly mutating RNA virus over the threshold to "error catastrophe", (3) inhibition of the host enzyme inosine monophosphate dehydrogenase (IMPDH), and (4) enhancement of host T-cell-mediated immunity against viral infection. In addition to the direct inhibition, it is also possible that other mechanisms such as error-prone and IMPDH-inhibition are involved in HCV escape from RBV treatment. Further investigation of the interaction of HCV variants with the viral and cellular factors involved in viral resistance may improve understanding of the mechanism(s) of RBV resistance.

In conclusion, RBV encountered resistance from the HCV genotype 2a replicon largely mediated by mutations in the N-terminal region of NS5B. Although whether these mutagenic effects are also demonstrable in IFN-RBV combination therapy will require further studies, the mutations identified in this study represent the first drug-resistant variants belonging to HCV genotype 2a. The drug resistance patterns found in this study may be of benefit in prediction in vivo resistance profiles and the development of next-generation nucleoside analogues as anti-HCV drugs.

Acknowledgments

We thank M. Matsuda, S. Yoshizaki, M. Ikeda, T. Shimoji, M. Kaga and M. Sasaki for their technical assistance. This work was supported by a grant-in-aid for Scientific Research from the Japan Society for the Promotion of Science, from the Ministry of Health, Labour and Welfare of Japan and from the Ministry of Education, Culture, Sports, Science and Technology, and by Research on Health Sciences focusing on Drug Innovation from the Japan Health Sciences Foundation, Japan and by the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of

Biomedical Innovation of Japan. S.S.H. is the recipient of a Research Resident Fellowship from Viral Hepatitis Research Foundation of Japan.

References

- Aizaki, H., Nagamori, S., Matsuda, M., Kawakami, H., Hashimoto, O., Ishiko, H., Kawada, M., Matsuura, T., Hasumura, S., Matsuura, Y., Suzuki, T., Miyamura, T., 2003. Production and release of infectious hepatitis C Virus for human liver cell cultures in the three-dimensional radial-flow bioreactor. Virology 314, 16–25.
- aus dem Siepen, M., Oniangue-Ndza, C., Wiese, M., Ross, S., Roggendorf, M., Viazov, S., 2007. Interferon-alpha and ribavirin resistance of Huh7 cells transfected with HCV subgenomic replicon. Virus Res. 125, 109–113.
- Date, T., Kato, T., Miyamoto, M., Zhao, Z., Yasui, K., Mizokami, M., Wakita, T., 2004. Genotype 2a hepatitis C virus subgenomic replicon can replicate in HepG2 and IMY-N9 cells. J. Biol. Chem. 279, 22371–22376.
- Domingo, E., 1996. Biological significance of viral quasispecies. Viral Hep. Rev. 2, 247–261.
- Farci, P., Purcell, R.H., 2000. Clinical significance of hepatitis C virus genotypes and quasispecies. Semin. Liver Dis. 20, 103–126.
- Forns, X., Purcell, R.H., Bukh, J., 1999. Quasispecies in viral persistence and pathogenesis of hepatitis C virus. Trends Microbiol. 7, 402–410.
- Fried, T.R., Bradley, E.H., Towle, V.R., Allore, H., 2002. Understanding the treatment preferences of seriously ill patients. N. Engl. J. Med. 346, 1061–1066.
- Herlihy, K.J., Graham, J.P., Kumpf, R., Patick, A.K., Duggal, R., Shi, S.T., 2008. Development of intragenotypic chimeric replicons to determine the broad-spectrum antiviral activities of hepatitis C virus polymerase inhibitors. Antimicrob. Agents Chemother. 52, 3523–3531.
- Kato, T., Date, T., Miyamoto, M., Furusaka, A., Tokushige, K., Mizokami, M., Wakita, T., 2003. Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 125, 1808–1817.
- Kato, T., Date, T., Miyamoto, M., Sugiyama, M., Tanaka, Y., Orito, E., Ohno, T., Sugihara, K., Hasegawa, I., Fujiwara, K., Ito, K., Ozasa, A., Mizokami, M., Wakita, T., 2005. Detection of anti-hepatitis C virus effects of interferon and ribavirin by a sensitive replicon system. J. Clin. Microbiol. 43, 5679–5684.
- Lau, J.Y., Tam, R.C., Liang, T.J., Hong, Z., 2002. Mechanism of action of ribavirin in the combination treatment of chronic HCV infection. Hepatology 35, 1002–1009.
- Lesburg, C.A., Cable, M.B., Ferrari, E., Hong, Z., Mannarino, A.F., Weber, P.C., 1999. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat. Struct. Biol. 6, 937–943.
- Manns, M.P., McHutchison, J.G., Gordon, S.C., Rustgi, V.K., Shiffman, M., Reindollar, R., Goodman, Z.D., Koury, K., Ling, M., Albrecht, J.K., 2001. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 358, 958-965.
- Martell, M., Esteban, J.I., Quer, J., Genesca, J., Weiner, A., Esteban, R., Guardia, J., Gomez, J., 1992. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. I. Virol. 66, 3225–3229.
- Miyamoto, M., Kato, T., Date, T., Mizokami, M., Wakita, T., 2006. Comparison between subgenomic replicons of hepatitis C virus genotypes 2a (JFH-1) and 1b (con1 NK5.1). Intervirology 49. 37–43.
- Pfeiffer, J.K., Kirkegaard, K., 2005. RBV resistance in hepatitis C virus replication containing cells conferred by changes in the cell line or mutations in the replicon RNA. J. Virol. 79, 2346–2355.
- Simmonds, P., Gallin, J.I., Farrei, A.S., 2000. Hepatitis C virus genotypes. Biomed. Res. Rep. 2, 53–70.
- Takeuchi, T., Katsume, A., Tanaka, T., Abe, A., Inoue, K., Tsukiyama Kohara, K., Kawaguchi, R., Tanaka, S., Kohara, M., 1999. Real-time detection system for quantification of Hepatitis C virus genome. Gastroenterology 116, 636–642.
- Tanaka, Y., Sakamoto, N., Enomoto, N., Kurosaki, M., Ueda, E., Maekawa, S., Yamashiro, T., Nakagawa, M., Chen, C.-H., Kanazawa, N., Kakinuma, S., 2004. Synergistic inhibition of intracellular hepatitis C virus replication by combination of ribavirin and interferon-alpha. J. Infect. Dis. 189, 1129–1139.
- World Health Organization (WHO), 2000. Hepatitis C: global prevalence (update). Weekly Epidemiological Record, WHO 75, 18–19.
- Young, K.C., Lindsay, K.L., Lee, K.J., Liu, W.C., He, J.W., Milstein, S.L., Lai, M.M., 2003. Identification of a ribavirin-resistant NS5B mutation of hepatitis C virus during ribavirin monotherapy. Hepatology 38, 869–878.
- Zhou, S., Liu, R., Baroudy, B.M., Malcolm, B.A., Reyes, G.R., 2003. The effect of ribavirin and IMPDH inhibitors on hepatitis C virus subgenomic replicon RNA. Virology 310, 333–342.